
54 The Delphi Magazine Issue 35

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

BDE Administrator Amnesia

QAfter installing the 32-bit
version of the BDE on a

client’s Windows 95 machine, the
BDE Administrator seems to have a
problem. On the Configuration tab,
under Configuration, Drivers,
Native it shows nothing at all. The
BDE seems to work okay in that
Paradox tables can be accessed,
but I can’t change any of the
settings. I am sure it is something
simple but I can’t figure it out.

AIn the BDE Administrator try
playing around with the op-

tions in Object | Options. I can
make all of my drivers ‘disappear’
by unchecking the session, persis-
tent and virtual checkboxes. I think
Persistent is the one that’s impor-
tant here. These checkboxes map
onto a Windows registry setting
that can be viewed by running
REGEDIT.EXE and navigating
through to

My Computer\HKEY_LOCAL_MACHINE\
Software\Borland\
Database Engine

and selecting the ViewMode entry. If
all three checkboxes are selected,
this entry will have a value of SPV,
meaning that all Session aliases,
Persistent aliases and Virtual ali-
ases will be listed in the BDE
Administrator.

Bad BDE Installation

QI have installed Delphi 2,
C++Builder 1, Delphi 3 and

C++Builder 3 over the past couple
of years. During the last 32-bit in-
stallation, I got an error at the end
regarding a failure to start up the
BDE. Now, every application that
tries to use the BDE fails with the

message An error occurred while
attempting to initialise the Borland
Database Engine (error $2109). I
can’t find out how to fix it. What is
wrong?

AI have also had this problem,
and it is caused by the way

the BDE is set up in the registry.
The location of all the BDE DLLs is
stored in the registry key

HKEY_LOCAL_MACHINE\SOFTWARE\
Borland\Database Engine\
DLLPath

Each successive InstallShield
installation adds the path chosen
by the user for the BDE (and the
SQL drivers if installing the
Client/Server version) to the end of
the DLLPath key. During Borland
product installations. I always
install the main BDE files in the
default c:\Program Files\Common
Files\BDE directory, but the SQL
drivers get placed in c:\Program
Files\Common Files\BDE\SQL.
This gives me a DLLPath key value
made of these two directories, plus
a semicolon: 71 characters.

With each new product installa-
tion, this same 71 character path is
added onto the end of DLLPath
(along with another semicolon
separator), making 143 characters,
then 215 characters and then 287
characters. It is at this point that
the BDE will fail to initialise,
because the supplied search path
is bigger in length than the
Windows constant MAX_PATH (260).
Windows objects to search paths
longer than MAX_PATH and so the
BDE DLLs are not located.

So the answer is to tidy up the
DLLPath key and remove
duplication. Really, InstallShield
should only add directories if they
are not already in the DLLPath key,

so it is all due to a limitation of the
product installer.

Dynamic Fonts

QDo you know of any way in
which I can load fonts at

runtime and then assign them to
labels?

AYou will need to call Add-
FontResource(‘TheFontFil-

eName’) and remember to call
RemoveFontResource later. These
two functions are Windows API
routines. To be polite and
courteous you will also need to use

SendMessage(HWnd_Broadcast,
wm_FontChange, 0, 0)

after calling each of the two font
APIs. Assuming you know (by pre-
vious examination) what the font
names are, you can then assign
them to the Font.Name property of
any appropriate component.

Cached Updates Problem

QWhen using cached updates
with SQL, Delphi creates

files such as Del1.MB and Pdox-
Usrs.Lck in the same directory as
the executable. If two users try to
use the same executable at the
same time I get an error saying that
the directory is controlled by an-
other lock file. This is because, for
both users, Delphi tries to create a
lock file in the same directory. Is
there a way to tell Delphi where to
put the lock and .MB files?

ATry setting a value for the
Session.PrivateDir prop-

erty that equates to a local path.
The BDE will place the cached up-
date file (DEL1.MB) and any other
temporary files (such as lock files

56 The Delphi Magazine Issue 35

in the specified directory, thus
avoiding the clash between multi-
ple users. This can be done in your
main form’s OnCreate event han-
dler, or with the Object Inspector if
a TSession component is used.

Erratic MDI Menu

QI have encountered a prob-
lem using Delphi (and also

C++Builder) when producing an
MDI application. My program occa-
sionally needs to insert a menu
item into the main menu. This is
fine except when an MDI child
window is in a maximised state.
Under these circumstances the
menu item is successfully added to
the main menu, but the minimise,
maximise and close buttons for the
child window then disappear. Have
you encountered this problem
before or do you know of a
solution?

AI hadn’t seen this problem
before but it seems to hap-

pen in all versions of Delphi. The
solution appears to be to minimise
the child window before adding the
menu item and then maximise it
again afterwards. Obviously this
minimising and maximising must
only take place if the child is
maximised to begin with.

In Delphi 1, you can avoid the
noticeable screen action that this

procedure TForm1.NewItem1Click(Sender: TObject);
begin
{ This loses the maximised MDI child system buttons }
Menu.Items.Insert(1, NewItem('New 1', 0, False, True, nil,
0, ''));

end;
procedure TForm1.NewItem2Click(Sender: TObject);
var Flag: Boolean;
begin
Flag := ActiveMDIChild.WindowState = wsMaximized;
if Flag then begin
{ Causes some flicker outside the app }
LockWindowUpdate(Handle);
ActiveMDIChild.WindowState := wsNormal;

end;
try
Menu.Items.Insert(1, NewItem('New 2', 0, False, True,
nil, 0, ''))

finally
if Flag then begin
ActiveMDIChild.WindowState := wsMaximized;
LockWindowUpdate(0)

end
end

end;
procedure TForm1.NewItem3Click(Sender: TObject);
{$ifdef Win32}
var Flag, Animation: Boolean;
function GetAnimation: Boolean;
var Info: TAnimationInfo;
begin
Info.cbSize := SizeOf(TAnimationInfo);
if SystemParametersInfo(SPI_GETANIMATION, SizeOf(Info),
@Info, 0) then
Result := Info.iMinAnimate <> 0

else
Result := False;

end;
procedure SetAnimation(Value: Boolean);
var Info: TAnimationInfo;
begin
Info.cbSize := SizeOf(TAnimationInfo);
BOOL(Info.iMinAnimate) := Value;
SystemParametersInfo(SPI_SETANIMATION, SizeOf(Info),
@Info, 0);

end;
{$endif}
begin
{$ifdef Win32}
Flag := ActiveMDIChild.WindowState = wsMaximized;
Animation := GetAnimation;
if Flag then begin
{ Causes some flicker inside the app }
if Animation then
SetAnimation(False);

ActiveMDIChild.WindowState := wsNormal
end;
try
Menu.Items.Insert(1, NewItem('New 3', 0, False, True,
nil, 0, ''))

finally
if Flag then begin
ActiveMDIChild.WindowState := wsMaximized;
if Animation then SetAnimation(True)

end
end

{$else}
ShowMessage('This option is Win32 only')

{$endif}
end;

➤ Listing 1
will cause using the LockWindowUp-
dateWindows API. In Delphi 2 and 3
you could alternatively turn the
window animation off for the dura-
tion. This is the zooming effect you
get when minimising and maximis-
ing most windows in Windows 95
and Windows NT. This latter
option might be desirable as some
find the flickering caused by the
redraw operations caused by
LockWindowUpdate to be excessive.

Listing 1 shows the three possi-
bilities including the one that
causes the problem. The code can
be found in the project MDI-
Menus.Dpr on the disk. I callously
poached the animation enabling
and disabling code from the Forms
unit. The VCL uses it when minimis-
ing an application. In Delphi 2 and 3
you might notice that when you
minimise the main form, all forms
disappear into one icon on the task
bar. In fact, all forms get hidden,
the task bar icon is a minimised ver-
sion of the Application window, dis-
played with no zooming.

Shipping Bitmaps

QI need to be able to copy a
bitmap to the canvas of a

form. This bitmap may be one of
several that can be copied at run-
time. I initially thought of keeping
these bitmaps in a resource file
bound to the EXE, so that one

could be loaded and copied when
required. The problem with this
approach is that the size of the
final EXE would be very large, even
if I don’t include bitmaps for higher
resolutions. My question is can bit-
maps (or other resource items) be
stored in a DLL that is dynamically
linked to the EXE? If so, how?

AThe answer to the first ques-
tion is yes. The answer to

the second takes up the rest of this
entry. Bitmaps and any other arbi-
trary resources can be bound to an
application executable, one of its
DLL code libraries, a resource DLL
with practically no code, or to a
Delphi package. Before worrying
about how to do it with packages in
Delphi 3 and above, let’s check out
normal DLLs.

To load an arbitrary DLL, you
call LoadLibrary, storing the
returned module handle. If this
value is less than HInstance_Error
then it signifies an error. The
library must later be unloaded
from memory with FreeLibrary.

Given a module handle, you can
load a bitmap resource from it with
LoadBitmap, passing the handle as
the first parameter. This handle
can be the HInstance variable in an
application, which indicates the
.EXE itself (although it is safest to

July 1998 The Delphi Magazine 57

use MainInstance in Delphi 3
onwards as I’ll explain later), or a
DLL’s module handle. The second
parameter for LoadBitmap is the
bitmap resource identifier, used
when manufacturing the resource
file. LoadBitmap returns a bitmap
handle which can be assigned to
the Handle property of a TBitmap.

Information on manufacturing a
resource file using a resource
script can be found in the Playing
Videos entry in Issue 32’s Delphi
Clinic. The only extra thing to men-
tion is that the command-line
resource compiler is called
BRCC.EXE in Delphi 1. An example
of a resource script that might be
used is shown in Listing 2
(ResBmps.RC), where the refer-
enced ResConst.Pas file is in List-
ing 3. Obviously you might need to
change the paths.

Of course there is no real neces-
sity to use the resource compiler
when just setting up bitmap
resources. You can use Delphi’s
image editor or Inprise’s Resource
Workshop instead. However, using
these tools might mean that your
resource identifier constants can
get out of sync with the actual
resources.

Once the resource script is com-
piled, you should have a binary
ResBmps.Res file ready for linking
into your resource DLL. The
source for the resource DLL proj-
ect is the barest skeleton to com-
pile, and links the resource file in.
Compiling this gives ResLib.Dll:

library ResLib;
{$R ResBmps.Res}
Begin
end.

#include "ResConst.Pas"
bmpAthena BITMAP "c:\delphi\Images\Splash\16Color\Athena.Bmp"
bmpChemical BITMAP "c:\delphi\Images\Splash\256Color\Chemical.Bmp"

➤ Listing 2

unit ResConst;
interface
const
bmpAthena = 1;
bmpChemical = 2;

implementation
end.

➤ Listing 3

type
TForm1 = class(TForm)
...

public
DLLHandle: THandle;

end;
...
uses ResConst;
...
procedure TForm1.FormCreate(Sender: TObject);
begin
DLLHandle := LoadLibrary('ResLib.Dll');
if DLLHandle < HInstance_Error then
{$ifdef Win32}
RaiseLastWin32Error;

{$else}
raise Exception.Create('Could not load resource DLL')

{$endif}
end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
FreeLibrary(DLLHandle)

end;
procedure TForm1.Button1Click(Sender: TObject);
begin
Image1.Picture.Bitmap.Handle :=
LoadBitmap(DLLHandle, MakeIntResource(bmpAthena))

end;
procedure TForm1.Button2Click(Sender: TObject);
begin
Image1.Picture.Bitmap.Handle :=
LoadBitmap(DLLHandle, PChar(bmpChemical))

end;

➤ Listing 4

A sample project that makes use of
this DLL, BmpUser.Dpr, is on this
month’s disk. The important code
from BmpUserU.Pas is in Listing 4.
Two buttons are used to load one
of the two bitmaps into a TImage
control. Since I gave the two
bitmap resources numeric identifi-
ers, I have to either use MakeIntRe-
source or a PChar typecast (see the
two button OnClick handlers in
Listing 4) to get a successful compi-
lation. Figure 1 shows the program
accessing the bitmaps.

So using a DLL is easy enough.
But what about storing resources
in a package? Well technically
speaking, a package is just a spe-
cial case of a DLL with a .DPL file
extension, but
when you compile
with Delphi 3 pack-
ages, that knowl-
edge is not useful.
The contents of all
the units that get
compiled into a
package are avail-
able to the applica-
tion using the
package just as if

they were being compiled directly
into that application. Also, to make
a new package, you do not create a
DLL project, you ask Delphi to
create a package instead.

Because of all this, the steps to
getting access to resources in
packages are a little different.
Assuming you already have the
compiled resource file and con-
stant declaration unit as described
above, we proceed like this.

Make a new package (File |
New... | Package) and give it a file
name, location and optional
description. I have supplied one
called ResPkg.Dpk. Now, to provide
somewhere to bind the resources
from, make a new unit and put the
appropriate compiler directive in:

{$R ‘ResBmps.RES’}

This unit can then be added to the
package with the package editor’s

➤ Figure 1

58 The Delphi Magazine Issue 35

Add button. My unit is called
ResPkgU.Pas and when added,
makes Delphi’s package editor
look like Figure 2. Since this pack-
age has no use at design-time,
press the Options button, deselect
design-time package and then
select runtime package.

What you have now, if you press
the package editor’s Compile
button, is a .DPL file containing
your two bitmap resources. This
package is going to be used by an
application that we will now
create.

Choose File | New Application,
and add a pair of buttons and an
image control onto the form (like in
Figure 2). Bring up the project
options dialog and on the Packages
page, ensure the Build with run-
time packages checkbox is
checked. Now, to make Delphi do
the right thing with respect to your
package, press the Add...button in
the Runtime packages group on the
same page and locate the .DCP file
generated for your package when it
was compiled.

With respect to getting access to
the bitmap resources, we will not
need to call LoadLibrary on our
package. So long as we refer to
something in the package, Delphi
will ensure it gets loaded while the
application is loading. The ques-
tion is how do we find the module
handle for our package?

I mentioned the HInstance vari-
able earlier. This is declared in the
System unit, the unit that is implic-
itly used by all Delphi files. HIn-
stance represents the module
handle of the binary file that con-
tains HInstance. In our application
code, HInstance represents the
.EXE module handle. In code com-
piled within the package, HInstance
represents the .DPL module

handle. HInstance is
therefore ambiguous,
meaning different
things depending
upon where you
access it. This is why,
if you want the .EXE
module handle, you
should use MainIn-
stance which always
returns the main
application module
handle. In the case in
point here, we need to
access the package
module handle from
the application. The
easiest way to do that is to add a
variable into the package unit that
gets set to the package’s own HIn-
stance variable value. My
ResPkgU.Pas file is shown in its full
glory in Listing 5.

This now means that as long as
we add ResPkgU to a uses clause in
the application we are working on,
we can refer to ResInstance and it
will give us the required module
handle. This reference to some-
thing in the package also ensures
that Delphi will definitely cause the
package to be loaded along with
the program. Had we not refer-
enced anything, the package would
have been ignored and not loaded.

The useful code from the second
sample project, BmpUser2.Dpr, is
in Listing 6.

Graphic File Extensions

QDelphi 1, 2 and 3 all support a
given set of graphic file

types: icons (.ICO), bitmaps (.BMP)
and metafiles (.WMF). Delphi 2
added support for enhanced me-
tafiles (.EMF) and Delphi 3 has
given support for JPEGs (.JPG and
.JPEG). Since it is possible for other
graphic formats to be installed, is
there a way of getting a list of

unit ResPkgU;
interface
var
ResInstance: Integer = 0;

implementation
{$R 'ResBmps.RES'}
initialization
ResInstance := HInstance

end.

➤ Listing 5

supported graphic file extensions,
for the purposes of using it in an
open file dialog?

AUp until Delphi 3, the
appropriate variable re-

mained unavailable. All the regis-
tered file formats are stored in a
linked list called FileFormatList.
This is a variable hidden in the im-
plementation part of the Graphics
unit. So with Delphi 1 and 2, you
will have to do the work manually.
But with Delphi 3, things have
opened up.

The GraphicFileMask function
returns the file specification asso-
ciated with a given graphic class.
So GraphicFileMask(TBitmap) ret-
urns the string *.bmp and you get
the string *.emf;*.wmf when you
call GraphicFileMask(TMetafile).
However, if you pass in the base
graphic class, TGraphic, to
GraphicFileMask, it gives you a
compound string containing the
extensions of all the supported
graphic formats. If the JPEG unit
has been added to any uses clause
in your project, or is contained in a
required package in your applica-
tion, the string will by default be

➤ Figure 6

uses
ResConst, ResPkgU;

procedure TForm1.Button1Click(Sender: TObject);
begin
Image1.Picture.Bitmap.Handle :=
LoadBitmap(ResInstance, MakeIntResource(bmpAthena))

end;
procedure TForm1.Button2Click(Sender: TObject);
begin
Image1.Picture.Bitmap.Handle :=
LoadBitmap(ResInstance, PChar(bmpChemical))

end;

➤ Figure 2

July 1998 The Delphi Magazine 59

.jpeg;.jpg;*.bmp;*.ico;*.emf;*
.wmf otherwise it will be
.bmp;.ico;*.emf;*.wmf.

For the purposes of supporting
open dialogs (and open picture
dialogs), there is another function
called GraphicFilter. Again, you
pass a specific or generic graphic
class to the function but this time it
returns a filter string that can be
assigned to the Filter property of
an appropriate dialog. Figure 3
shows such a generated filter being
used and Listing 7 shows the
straightforward code that makes it
work.

Office Integration

QI have been looking through
The Delphi Magazine for any

tips on Microsoft Office 97 integra-
tion, specifically Microsoft Out-
look. I have this code fragment
(Listing 8) that works well (when
translated) in Visual Basic, but
does not in Delphi 2 and 3. It simply
makes a call to Outlook to create a
new contact, which it does, but the
information (name, telephone
number, etc) does not get passed
over. The contact remains blank.

ADelphi 3 introduced type li-
brary support, which is usu-

ally of great help when trying to get

some Automation code working.
Before we look at what this means
for this problem, I just need to
emphasise a few basic points
about Automation support as
implemented in Delphi.

Delphi 2 introduced support for
Automation (or OLE Automation as
it was called then). The (also new)
Variant data type was used as the
prime controlling force of the Auto-
mation mechanism. When you call
CreateOleObject (from the OleAuto
unit) and pass it an appropriate
ProgID (for example OutLook.Appli-
cation) some Delphi code calls
some Windows code that attempts
to manufacture an instance of the
object described by the ProgID. If
an instance of the appropriate pro-
gram is already running, that
object might well be managed by
that program instance. If no
instance of the program is running,
then the program is launched.

var OutLook: Variant;
...
OutLook := CreateOleObject('OutLook.Application');
OutLook.CreateItem(2);
OutLook.CreateItem(2).LastName := edtLastName.Text;
OutLook.CreateItem(2).FirstName := edtFirstName.Text;
OutLook.CreateItem(2).BusinessTelephoneNumber:=edtBusTelNo.Text;
OutLook.CreateItem(2).Save;

procedure TForm1.FormCreate(Sender: TObject);
begin
OpenDlg.Filter := GraphicFilter(TGraphic)

end;

➤ Listing 7

Things differ slightly if the Automa-
tion object code lives in a DLL but
we will ignore complications right
now.

When Delphi 2’s CreateOleObject
completes, assuming it was suc-
cessful, it returns a Variant con-
taining appropriate information to
allow communication with the
object to continue. To talk to the
object you do it via the Variant.
You treat the Variant like it is the
object in question, accessing prop-
erties, calling methods and so on,
and some Delphi magic makes it all
work out nicely.

Note that in contrast to a Delphi
method call or property read/
write, the Delphi compiler will not
try and verify what you are access-
ing via the Variant. Instead, the
compiler will package it up into a
data block called a ‘call descriptor’
and at runtime pass it over to the
Automation object in the server.
The server will then look it up and
see if it is acceptable. If the method
is invalid you will get an exception
at runtime rather than a compile-
time error. This is referred to as
‘late binding’.

A Variant can hold values of
many different types and indeed
can hold arrays inside of itself. The
data type stored in a Variant when
talking to an Automation server is
an IDispatch reference. IDispatch
is an interface. You might need to
refer to the COM series by Dave
Jewell if unfamiliar with this form
of terminology, but suffice it to say
that an Automation server is an
object that implements the IDis-
patch interface. The fact that the
Variant variable holds an IDis-
patch reference means that it is

➤ Figure 3

➤ Listing 8

60 The Delphi Magazine Issue 35

connected to an Automation
object. Any object that implements
the IDispatch interface can be
assumed to be an Automation
server.

The object in question (as imple-
mented in Microsoft Outlook) will
have a number of properties and
methods, and indeed you have
found a certain amount of informa-
tion on one of these, CreateItem.
For me (with no experience of pro-
gramming OutLook) to examine
this problem, I need some informa-
tion on how to call CreateItem. A
subroutine declaration would be
nice.

This is where the type library
support of Delphi 3 comes in. Inci-
dentally, in Delphi 3 Automation
(and COM) support was re-
implemented. CreateOleObject still
exists, but now in the ComObj unit.
Also, instead of returning a Variant
it now returns an IDispatch
directly (which you can still assign
to a Variant if you wish).

COM objects in general (of which
Automation objects are a subset)
can offer supporting type libraries.
Type libraries are binary files
which describe the COM objects
(and other sundry bits and pieces)
available in a language independ-
ent manner. Development tools
such as Delphi 3 and Borland
C++Builder 3 can read these type
libraries and generate local lan-
guage declarations for the inter-
faces implemented by the COM
objects. So Delphi 3 can generate a
unit containing Delphi Pascal inter-
face declarations for all the objects
exposed by Microsoft Outlook.
This can be used to find what
parameters are taken and what
data types get returned, but can
also be used in your program.
Indeed, these can be used by the
Code Completion and Code
Parameters windows in Delphi 3 to
ensure you get things pretty much
right. When talking to Automation
objects, these declarations allow
rather more efficient ‘early bind-
ing’ where the objects are called
more directly than when using a
Variant.

A type library of another pro-
gram can be opened in one of two
ways. One way would be simply to

have a look at what is in it, which
can be done using the type library
editor. The other is to ask Delphi to
generate a new unit containing
Pascal versions of everything in
the type library it recognises and
then to add it to the current proj-
ect. This latter option would allow
you to programmatically refer to
things defined in the type library.

To simply browse Outlook’s
type library, choose File | Open...
and then drop down the Files of
type: combobox and choose Type
Library. Now navigate to where
your Microsoft Office package is
installed and find the appropriate
library. Mine is at C:\Program
Files\Microsoft Office\Office\
MSOutl8.Olb. When you press Open,
you are taken to the type library
editor (which looks something like
Figure 4).

Very much like the form
designer and form unit can be
switched between with F12 (as can
a package source file and the pack-
age editor) this keystroke also
toggles between the type library
editor and the type library’s
import unit. So F12 in the type
library viewer does show you a
Pascal import unit for Outlook, but
it is not part of the project and it is
not really a standalone file.
Because of the way it was opened,
the Pascal code is simply a view on
the type library. This is not an
advisable approach as Delphi
probably won’t be able to repre-
sent everything in the type library

in Pascal terms. Additionally,
Delphi will quite happily try and
save a modified version of the type
library if you inadvertently choose
the File | Save option (however,
Delphi will tell you that you will
lose some information first).

If you wish to add a Pascal ver-
sion of the Outlook type library
into your project, we can do the
following. Choose Project | Import
Type Library... and select the
Microsoft Outlook entry, mine
says Microsoft Outlook 8.0 Object
Library (Version 8.0). If the type
library is not present in the list
(which means it has not been regis-
tered by its application) you can
press the Add... button and go and
find it manually. Finally press OK.
This generates a file Out-
look_TLB.Pas with a lot of inter-
face definitions in. This unit is
saved (by default) in Delphi’s
Imports directory and added to
the project. In addition, because
Outlook’s type library refers to
two other Microsoft type libraries,
you will also get the Office_TLB
and MSForms_TLB units generated.

The object interfaces surfaced
by Outlook tend to support Auto-
mation. Because of this, for any
interface you will find one entry
prefixed with _I (an interface for
COM programming) and another
entry prefixed with _D (a dispatch
interface for Automation program-
ming). Since the code in Listing 11

➤ Figure 4

62 The Delphi Magazine Issue 35

is trying to create an Out-
Look.Application object for Auto-
mation purposes, we should be
looking in Outlook’s type library
for a _DApplication dispatch
interface.

Using either the type library
viewer (Figure 4) or the type
library import unit, you should be
able to locate this item. The code
declaration is shown in Listing 9.

The CreateItem function takes a
parameter from the OlItems enu-
meration (whose values again can
be found in the type library viewer
or import unit, the symbol olCon-
tactItem equates to the value of 2
that you are using) and returns an
IDispatch. In other words, when
you call CreateItem, you get
another Automation object
returned. The value passed into
CreateItem dictates what type of
object is returned, but if you pass
in a value that asks for a contact, it
makes sense that the object
returned will be related to contacts
very strongly. From browsing what
is available, the likely dispatch
interface type is _DContactItem,
which is borne out by the fact that
you refer to properties called
FirstName and LastName. _DContac-
tItem has these properties
(amongst many others, see Listing
10).

This contact item object should
be kept around in a separate vari-
able and talked to in its own right.
Your code in Listing 9 is calling
CreateItem five times, making five
separate contact items. The last
one created is the one that you
save, and so it has no details set
and so remains blank. Not having a
copy of Visual Basic I cannot verify
how well or badly this code style
would work, but given the type
library information I would be sur-
prised if it worked exactly as
required.

The code in Listing 11 (from
Out_Look.Dpr) seems to work a bit
more satisfactorily. Notice that it
caters for both Delphi 2 and 3.

Before closing this section I feel I
should mention some problems I
bumped into when looking into
this question. Firstly, when the
OutLook_TLB.Pas file is added to
the project, it causes a compilation

error. OutLook_TLB defines a
symbol in its interface section
called Application. In the project
source file, there is ambiguity
between Application as defined in
the Forms unit and Application as
defined in the OutLook_TLB unit.
Because units added to a project
are added at the bottom of the proj-
ect file’s uses clause, and because
the compiler always looks at the
last unit in a uses clause first, the
wrong Application symbol is used.
So I had to modify my project file to
allow it to compile. I could have
moved the Forms unit to be the last
unit in the uses clause, but I took

_DApplication = dispinterface
['{00063001-0000-0000-C000-000000000046}']
property Assistant: Assistant readonly dispid 276;
function ActiveExplorer: Explorer; dispid 273;
function ActiveInspector: Inspector; dispid 274;
function CreateItem(ItemType: OlItems): IDispatch; dispid 266;
function CreateItemFromTemplate(const TemplatePath: WideString;
InFolder: OleVariant): IDispatch; dispid 267;

function CreateObject(const ObjectName: WideString): IDispatch; dispid 277;
function GetNamespace(const Type_: WideString): NameSpace; dispid 272;
procedure Quit; dispid 275;

end;

➤ Listing 9

_DContactItem = dispinterface
['{00063021-0000-0000-C000-000000000046}']

...
property BusinessAddress: WideString dispid 32795;
property BusinessAddressCity: WideString dispid 32838;
property BusinessAddressCountry: WideString dispid 32841;
property BusinessAddressPostalCode: WideString dispid 32840;
property BusinessAddressState: WideString dispid 32839;
property BusinessAddressStreet: WideString dispid 32837;
property BusinessFaxNumber: WideString dispid 14884;
property BusinessTelephoneNumber: WideString dispid 14856;

...
property FirstName: WideString dispid 14854;

...
property LastName: WideString dispid 14865;

...
procedure Save; dispid 61512;

...
end;

➤ Listing 10

the option of fully qualifying all ref-
erences to the Application symbol
that resides in the Forms unit, see
Listing 12.

The second problem is to do
with how Microsoft Office 97 acts
as a good COM object. Or should I
say doesn’t act as a good COM
object... As Dave Jewell as has
explained in his series Delphi
Meets COM (which started in Issue
28), COM objects are lifetime-
managed. Whenever you get a ref-
erence to a COM object (for exam-
ple, an Automation server), Delphi
will ensure that its reference count
is incremented. Whenever you

{$ifndef Ver90}
uses
ComObj, Outlook_TLB;

{$else}
uses
OleAuto;

const
olContactItem = 2;

{$endif}
{$R *.DFM}
procedure TForm1.Button1Click(Sender: TObject);
var
OutLook, Contact: Variant;

begin
OutLook := CreateOleObject('OutLook.Application');
Contact := OutLook.CreateItem(olContactItem);
Contact.LastName := edtLastName.Text;
Contact.FirstName := edtFirstName.Text;
Contact.BusinessTelephoneNumber := edtBusTelNo.Text;
Contact.Save;
Contact.Display(True);
// OutLook.Quit

end;

➤ Listing 11

July 1998 The Delphi Magazine 63

drop your connection to the
server, Delphi will decrement the
reference count. If the reference
count gets back down to zero, the
COM object should dispose of
itself.

What this tends to mean is that if
you start a conversation with Word
(for example), and Word was not
already running, then when you
finish the conversation, Word
should shut itself. This worked fine
with Word 6 and Word 95. However
Word 97, and all the other Office 97
applications, seem to have given
up this convention. The launched
application remains steadfastly
running when a Delphi application
finishes talking to it. I have asked
several people who I thought might
be able to explain this, but so far no
satisfactory explanation has been
forthcoming.

So, to summarise, your Outlook
application will still be running
when the Automation code has fin-
ished. One way to approach this
problem is to tell Outlook to explic-
itly close itself (see the com-
mented out call to Outlook’s Quit

program Out_Look;
uses
Forms,
OutLookU in 'OutLookU.pas' {Form1},
Outlook_TLB in 'Outlook_TLB.pas';

{$R *.RES}
begin
Forms.Application.Initialize;
Forms.Application.CreateForm(TForm1, Form1);
Forms.Application.Run;

end.

➤ Listing 12

method in Listing 12), but this isn’t
really the COM way. If anyone
knows how to get Office 97 to
behave like a good COM citizen,
please let me know.

For more information on using
Automation with Microsoft Out-
look, you should refer to the Micro-
soft Developer Network Library
CD-ROM, or the equivalent area on
Microsoft’s website. Doing a
search for ‘Automation and Out-
look’ comes up with many topics
which include several that discuss
using VB to automate Outlook. You
should be able to get the general
idea of what properties and meth-
ods do various jobs by browsing
through these.

Acknowledgements
Thanks to Steve Axtell from the
Inprise European Technical Team
for the database information used
in this month’s column.

	BDE Administrator Amnesia
	Bad BDE Installation
	Dynamic Fonts
	Cached Updates Problem
	Erratic MDI Menu
	Shipping Bitmaps
	Graphic File Extensions
	Office Integration
	Acknowledgements

